Unsupervised Clustering of Patients with Severe Aortic Stenosis: A Myocardial Continuum.

Archive ouverte : Article de revue

Bohbot, Yohann | Raitière, Olivier | Guignant, Pierre | Ariza, Matthieu | Diouf, Momar | Rusinaru, Dan | Altes, Alexandre | Gun, Mesut | Di Lena, Chloé | Geneste, Laura | Thellier, Nicolas | Maréchaux, Sylvestre | Bauer, Fabrice | Tribouilloy, Christophe

Edité par HAL CCSD ; Elsevier/French Society of Cardiology

International audience. BACKGROUND: Traditional statistics, based on prediction models with a limited number of prespecified variables, are probably not adequate to provide an appropriate classification of a condition that is as heterogeneous as aortic stenosis (AS). AIMS: To investigate a new classification system for severe AS using phenomapping. METHODS: Consecutive patients from a referral centre (training cohort) who met the echocardiographic definition of an aortic valve area (AVA) ≤q~1~cm(2) were included. Clinical, laboratory and imaging continuous variables were entered into an agglomerative hierarchical clustering model to separate patients into phenogroups. Individuals from an external validation cohort were then assigned to these original clusters using the K nearest neighbour (KNN) function and their 5-year survival was compared after adjustment for aortic valve replacement (AVR) as a time-dependent covariable. RESULTS: In total, 613 patients were initially recruited, with a mean±standard deviation AVA of 0.72±0.17~cm(2). Twenty-six variables were entered into the model to generate a specific heatmap. Penalized model-based clustering identified four phenogroups (A, B, C and D), of which phenogroups B and D tended to include smaller, older women and larger, older men, respectively. The application of supervised algorithms to the validation cohort (n=1303) yielded the same clusters, showing incremental cardiac remodelling from phenogroup A to phenogroup D. According to this myocardial continuum, there was a stepwise increase in overall mortality (adjusted hazard ratio for phenogroup D vs A 2.18, 95% confidence interval 1.46-3.26; P<0.001). CONCLUSIONS: Artificial intelligence re-emphasizes the significance of cardiac remodelling in the prognosis of patients with severe AS and highlights AS not only as an isolated valvular condition, but also a global disease.

Consulter en ligne

Suggestions

Du même auteur

Excess Mortality and Undertreatment of Women With Severe Aortic Stenosis

Archive ouverte: Article de revue

Tribouilloy, Christophe | 2021

International audience. Background Although women represent half of the population burden of aortic stenosis (AS), little is known whether sex affects the presentation, management, and outcome of patients with AS. M...

Myocardial Contraction Fraction for Risk Stratification in Low-Gradient Aor...

Archive ouverte: Article de revue

Rusinaru, Dan | 2021

International audience. Background: Myocardial contraction fraction (MCF) is a volumetric measure of myocardial shortening independent of left ventricular size and geometry. This multicenter study investigates the u...

Impact of left atrial and diastolic ventricular dysfunction on mortality in...

Archive ouverte: Article de revue

Thellier, Nicolas | 2023-01

International audience. Background: Diastolic dysfunction (DD) is common in severe aortic stenosis (AS) and preserved left ventricular ejection fraction (LVEF≥50%).Aim: To determine the impact of American Society of...

Du même sujet

The new laws of outer space : ethics, legislation, and governance in the ag...

Livre | Pagallo, Ugo

This text maps out the moral, legal and societal issues brought forth by the use of autonomous systems such as AI and smart robots in outer space. Humanity is on the brink of a new space era in which projects for permanent human c...

L' intelligence artificielle n'existe pas / Luc Julia

Livre | Julia, Luc (1966-....). Auteur | 2019

"Vous ne comprenez rien à l'intelligence artificielle (IA) ? Vous avez peur que de méchants robots prennent le pouvoir et finissent par contrôler le monde ? Vous vous intéressez à l'IA et aux nouvelles technologies, mais vous aime...

Manager l'intelligence artificielle / Roland Robeveille, Michelle Veyssière

Livre | Robeveille, Roland (19..-....) - docteur en gestion. Auteur | 2021 - 2e édition

Les machines intelligentes - Intelligence Artificielle ou IA - font émerger une complexité nouvelle dans le monde professionnel et dans nos vies privées. L'intrusion d'internet, du numérique et de l'IA est telle que les rôles et m...

Intelligence artificielle et innovations digitales en santé : transformatio...

Livre | Chassagne, Valentin. Auteur | 2021

"Depuis cinq ans environ, la donnée de santé, exploitée grâce à l’intelligence artificielle et au digital, entraine une transformation profonde du secteur de la santé, qui révolutionne à la fois les modes de prise en charge, les m...

I.A. la plus grande mutation de l'histoire : Qui dominera l 'I.A. dominera ...

Livre | Lee, Kai-Fu (1961-....). Auteur | 2021

La 4ème de couv. indique : "L'intelligence artificielle est la plus grande révolution de l'humanité. Bien plus brutale car plus rapide que la Révolution industrielle, elle pourrait rebattre les cartes de l'ordre mondial. Qui gagne...

Prognostic Value of Aortic Valve Area by Doppler Echocardiography in Patien...

Archive ouverte: Article de revue

Marechaux, Sylvestre | 2016

International audience. Background-The aim of this study was to evaluate the relationship between aortic valve area (AVA) obtained by Doppler echocardiography and outcome in patients with severe asymptomatic aortic ...

Chargement des enrichissements...