CNR-IEMN: a deep learning based approach to recognise covid-19 from CT-scan

Archive ouverte : Communication dans un congrès

Bougourzi, Fares | Contino, Riccardo | Distante, Cosimo | Taleb-Ahmed, Abdelmalik

Edité par HAL CCSD ; IEEE

ISBN 978-1-7281-7606-2 ; e-ISBN 978-1-7281-7605-5. International audience. The recognition of Covid-19 infection and distinguishing it from other Lung diseases from CT-scan is an emerging field in machine learning and computer vision community. In this paper, we proposed deep learning based approach to recognize the Covid-19 infection from the CT-scans. Our approach consists of two main stages. In the first stage, we trained deep learning architectures with Multi-task strategy for Slice-Level classification. In the second stage, we used the previous trained models with XG-boost classifier to classify the whole CT-scan into Normal, Covid-19 or Cap class. The evaluation of our approach achieved promising results on the validation data of SPGC-COVID dataset. In more details, our approach achieved 87.75% as overall accuracy and 96.36%, 52.63% and 95.83% sensitivities for Covid-19, Cap and Normal, respectively. From other hand, our approach achieved the fifth place on the three test datasets of SPGC on COVID-19 challenge where our approach achieved the best result for Covid-19 sensitivity.

Consulter en ligne

Suggestions

Du même auteur

Recognition of COVID-19 from CT Scans Using Two-Stage Deep-Learning-Based A...

Archive ouverte: Article de revue

Bougourzi, Fares | 2021

International audience. Since the appearance of the COVID-19 pandemic (at the end of 2019, Wuhan, China), the recognition of COVID-19 with medical imaging has become an active research topic for the machine learning...

Facial Beauty Prediction Using Hybrid CNN Architectures and Dynamic Robust ...

Archive ouverte: Communication dans un congrès

Dornaika, Fadi | 2022-08-21

oral. International audience

Covid-19 recognition using ensemble-cnns in two new chest x-ray databases

Archive ouverte: Article de revue

Vantaggiato, Edoardo | 2021-03-03

The used datasets were obtained from publically open source datastes from: 1 ieee8023/covid-chestxray-dataset https://github.com/ieee8023/covid-chestxray-dataset (accessed on 2 March 2021); 2 Chest X-Ray Images (Pneumonia) from Ka...

Du même sujet

Recognition of COVID-19 from CT Scans Using Two-Stage Deep-Learning-Based A...

Archive ouverte: Article de revue

Bougourzi, Fares | 2021

International audience. Since the appearance of the COVID-19 pandemic (at the end of 2019, Wuhan, China), the recognition of COVID-19 with medical imaging has become an active research topic for the machine learning...

ILC-Unet++ for Covid-19 Infection Segmentation

Archive ouverte: Communication dans un congrès

Bougourzi, Fares | 2022-05-23

International audience. Since the appearance of Covid-19 pandemic, in the end of 2019, Medical Imaging has been widely used to analysis this disease. In fact, CT-scans of the Lung can help to diagnosis, detect and q...

Les pouvoirs publics face aux épidémies : de l'Antiquité au XXIe siècle / s...

Livre | Vialla, François (1967-....) - juriste. Directeur de publication | 2021

Depuis plusieurs années, l'Institut d'histoire du droit de Montpellier et le Centre Européen d'Études et de Recherche Droit & Santé oeuvrent de concert autour des problématiques de santé. Le présent ouvrage est le fruit d'un trava...

Être étudiant avant et pendant la crise sanitaire : enquête conditions de v...

Livre | Belghith, Feres. Directeur de publication | 2023

L’enquête Conditions de vie de l’Observatoire national de la vie étudiante fournit depuis 1994 des données sans équivalent et chaque édition permet de lire les inflexions significatives pour discerner les évolutions de la populati...

Towards zero-latency video transmission through frame extrapolation

Archive ouverte: Communication dans un congrès

Vijayaratnam, Melan | 2022-10-16

International audience. In the past few years, several efforts have been devoted to reduce individual sources of latency in video delivery, including acquisition, coding and network transmission. The goal is to impr...

RGBD deep multi-scale network for background subtraction

Archive ouverte: Article de revue

Houhou, Ihssane | 2022

International audience. This paper proposes a novel deep learning model called deep multi-scale network (DMSN) for background subtraction. This convolutional neural network is built to use RGB color channels and Dep...

Chargement des enrichissements...