0 avis
Extraction and optimization of classification rules for temporal sequences: Application to hospital data
Archive ouverte : Article de revue
International audience. This study focuses on the problem of supervised classification on heterogeneous temporal data featuring a mixture of attribute types (numeric, binary, symbolic, temporal). We present a model for classification rules designed to use both non-temporal attributes and sequences of temporal events as predicates. We also propose an efficient local search-based metaheuristic algorithm to mine such rules in large scale, real-life data sets extracted from a hospital’s information system. The proposed algorithm, MOSC (Multi-Objective Sequence Classifier), is compared to standard classifiers and previous works on these real data sets and exhibits noticeably better classification performance. While designed with medical applications in mind, the proposed approach is generic and can be used for problems from other application domains.