Large-area femtosecond laser milling of silicon employing trench analysis

Archive ouverte : Article de revue

Bhaskar, Arun | Philippe, Justine | Braud, Flavie | Okada, Etienne | Avramovic, Vanessa | Robillard, Jean-François | Durand, Cédric | Gloria, Daniel | Gaquière, Christophe | Dubois, Emmanuel

Edité par HAL CCSD ; Elsevier

Renatech Network, Laboratoire commun STmicroelectronics - IEMN. International audience. A femtosecond laser is a powerful tool for micromachining of silicon. In this work, large-area laser ablation of crystalline silicon is comprehensively studied using a laser source of pulse width 300 fs at two wavelengths of 343 nm and 1030 nm. We develop a unique approach to gain insight into the laser milling process by means of detailed analysis of trenches. Laser scribed trenches and milled areas are characterized using optical profilometry to extract dimensional and roughness parameters with accuracy and repeatability. In a first step, multiple measures of the trench including the average depth, the volume of recast material, the average longitudinal profile roughness, the inner trench width and the volume removal rate are studied. This allows for delineation of ablation regimes and associated characteristics allowing to determine the impact of fluence and repetition rate on laser milling. In a second step, additional factors of debris formation and material redeposition that come into play during laser milling are further elucidated. These results are utilized for processing large-area (up to few mm 2) with milling depths up to 200 µm to enable the fabrication of cavities with low surface roughness at high removal rates of up to 6.9 µm 3 µs-1. Finally, laser processing in combination with XeF2 etching is applied on SOI-CMOS technology in the fabrication of radio-frequency (RF) functions standing on suspended membranes. Performance is considerably improved on different functions like RF switch (23 dB improvement in 2 nd harmonic), inductors (near doubling of Q-factor) and LNA (noise figure improvement of 0.1 dB) demonstrating the applicability of milling to radio-frequency applications.

Consulter en ligne

Suggestions

Du même auteur

Substrate engineering of inductors on SOI for improvement of Q-factor and application in LNA | Bhaskar, Arun

Substrate engineering of inductors on SOI for improvement of Q-factor and a...

Archive ouverte: Article de revue

Bhaskar, Arun | 2020-08-27

Renatech Network, Laboratoire commun ST-Microelectronics - IEMN. International audience. High Q-factor inductors are critical in designing high performance RF/microwave circuits on SOI technology. Substrate losses i...

Substrate-Induced Dissipative and Non-Linear Effects in RF Switches: Probing Ultimate Performance Based on Laser-Machined Membrane Suspension | Bhaskar, Arun

Substrate-Induced Dissipative and Non-Linear Effects in RF Switches: Probin...

Archive ouverte: Article de revue

Bhaskar, Arun | 2022

International audience. With the evolution of radio frequency (RF)/microwave technology, there is a demand for circuits that are able to meet highly challenging RF front end specifications. Silicon-on-insulator (SOI...

Mitigation of substrate coupling effects in RF switch by localized substrate removal using laser processing | Bhaskar, Arun

Mitigation of substrate coupling effects in RF switch by localized substrat...

Archive ouverte: Pré-publication, document de travail, ...

Bhaskar, Arun | 2021-08-24

With the evolution of radio frequency (RF)/microwave technology, there is a demand for circuits which are able to meet highly challenging RF frontend specifications. Silicon-on-insulator (SOI) technology is one of the leading plat...

Chargement des enrichissements...