0 avis
Antidictionary-Based Cardiac Arrhythmia Classification for Smart ECG Sensors
Archive ouverte : Communication dans un congrès
International audience. Cardiovascular diseases can be detected early by analyzing the electrocardiogram of a patient using wearable systems. In the context of smart sensors, detecting arrhythmias with good accuracy and ultra-low power consumption is required for long-term monitoring. This paper presents a novel cardiac arrhythmia classification method based on antidictionaries. The features are sequences of consecutive slopes that are generated from event-driven processing of the input signal. The proposed system shows an average detection accuracy of 98% while offering an ultra-low complexity. This antidictionary-based method is also particularly suited to imbalanced datasets since the antidictionaries are created exclusively from heartbeats classified as normal beats.