0 avis
Diffusive gradients in thin films, Rhizon soil moisture samplers, and indicator plants to predict the bioavailabilities of potentially toxic elements in contaminated technosols
Archive ouverte : Article de revue
Edité par HAL CCSD ; Springer Verlag
International audience. The phytoavailabilities and potential remobilization of potentially toxic elements (PTEs) such as Zn, Pb, Cd, As, and Sb were assessed in contaminated technosols from former mining and smelting sites. The PTE concentrations in soil pore water (SPW) and diffusive gradients in thin films (DGT)-measured concentration (C DGT) methods were used to assess the bioavailabilities of PTE and their remobilization in this study. Together with classical Chelex-100 DGT probes to measure Zn, Cd, and Pb, novel ferrihydrite-backed DGT were used for As and Sb measurements alongside with Rhizon soil moisture sampler method for SPW sampling. To assess the phytoavailabilities of PTE, a germination test with dwarf beans as a plant indicator was used for this purpose. Dwarf bean primary leaves showed high Zn concentrations in contrast to Pb and Cd which showed low phytoavailabilities. Despite As and Sb are present in high concentrations in the mine tailings, their phytoavailabilities indicate very low bioavailabilities. The amounts of Zn, Pb, Cd, As, and Sb extracted with DGT devices correlated well with the total dissolved PTE concentrations in the SPW. The highest R values were observed for Zn, followed by Cd and Pb, indicating the ability of the soil to sustain SPW concentrations, which decreased in that order. Good correlations were also observed between each of dissolved PTE concentrations in SPW, DGT-measured PTE concentrations (C DGT), and the accumulation of PTE in dwarf bean primary leaves. It could be concluded that the use of Rhizon soil moisture samplers and DGT methods may be considered to be a good methods to predict the PTE bioavailabilities in contaminated technosols.