Heterogeneous data reduction in WSN: Application to Smart Grids

Archive ouverte : Communication dans un congrès

Nassar, Jad | Miranda, Karen | Gouvy, Nicolas | Mitton, Nathalie

Edité par HAL CCSD

International audience. The transformation of existing power grids into Smart Grids (SGs) aims to facilitate grid energy automation for a better quality of service by providing fault tolerance and integrating renewable energy resources in the power market. This evolution towards a smarter electricity grid requires the ability to transmit in real time a maximum of data on the network usage. A Wireless Sensor Network (WSN) distributed across the power grid is a promising solution, given the reduced cost and ease of deployment of such networks. These advantages come up against the unstable radio links and limited resources of WSN. In order to reduce the amount of data sent over the network, and thus reduce energy consumption, data prediction is a potent solution of data reduction. It consists on predicting the values sensed by sensor nodes within certain error threshold, and resides both at the sensors and at the sink. The raw data is sent only if the desired accuracy is not satisfied, thereby reducing data transmission. We focus on time series estimation with Least Mean Square (LMS) for data prediction in WSN, in a Smart Grid context, where several applications with different data types and Quality of Service (QoS) requirements will exist on the same network. LMS proved its simplicity and robustness for a wide variety of applications, but the parameters selection (step size and filter length) can directly affect its global performance, choosing the right ones is then crucial. Having no clear and robust method on how to optimize these parameters for a variety of applications, we propose a modification of the original LMS that consists of training the filter for a certain time with the data itself in order to customize the aforementioned parameters. We consider different types of real data traces for the photo voltaic cells monitoring. Our simulation results provide a better data prediction while minimizing the mean square error compared to an existing solution in literature

Consulter en ligne

Suggestions

Du même auteur

Prédiction de données différenciée pour les Smart Grids | Nassar, Jad

Prédiction de données différenciée pour les Smart Grids

Archive ouverte: Communication dans un congrès

Nassar, Jad | 2018-05-28

International audience. La transformation des réseaux électriques existants en Smart Grids (SGs) ambitionne d'en faciliter l'automatisation pour une meilleure qualité de service tout en y facilitant l'intégration de...

QoS-compliant Data Aggregation for Smart Grids | Nassar, Jad

QoS-compliant Data Aggregation for Smart Grids

Archive ouverte: Communication dans un congrès

Nassar, Jad | 2018-05-20

International audience. The Smart Grid (SG) aims to transform the current electric grid into a "smarter" network where the integration of renewable energy resources, energy efficiency and fault tolerance are the mai...

Fonction objectif pour un RPL adapté aux Smart Grids | Nassar, Jad

Fonction objectif pour un RPL adapté aux Smart Grids

Archive ouverte: Communication dans un congrès

Nassar, Jad | 2017-05-29

International audience. L'acheminement des données dans l'Internet des Objets a depuis toujours été un défi. En effet, il s'agit de router des données dans un réseau caractérisé par une hétérogénéité omniprésente : ...

Du même sujet

Regression-based Data Reduction Algorithm for Smart Grids | Chreim, Bashar

Regression-based Data Reduction Algorithm for Smart Grids

Archive ouverte: Communication dans un congrès

Chreim, Bashar | 2021-01-09

International audience. The evolution towards Smart Grids (SGs) represents an important opportunity for the energy industry. It is characterized by the integration of renewable and alternative energy resources into ...

RADAR - Regression Based Energy-Aware DAta Reduction in WSN: Application to Smart Grids | Chreim, Bashar

RADAR - Regression Based Energy-Aware DAta Reduction in WSN: Application to...

Archive ouverte: Type de document indéfini

Chreim, Bashar | 2021-04-27

International audience. The evolution towards Smart Grids (SGs) represents an important opportunity for the energy industry. It is characterized by the integration of renewable and alternative energy resources into ...

Prédiction de données différenciée pour les Smart Grids | Nassar, Jad

Prédiction de données différenciée pour les Smart Grids

Archive ouverte: Communication dans un congrès

Nassar, Jad | 2018-05-28

International audience. La transformation des réseaux électriques existants en Smart Grids (SGs) ambitionne d'en faciliter l'automatisation pour une meilleure qualité de service tout en y facilitant l'intégration de...

Ubiquitous Networks for Smart Grids. Réseaux Ubiquitaires pour les Smart Grids | Nassar, Jad

Ubiquitous Networks for Smart Grids. Réseaux Ubiquitaires pour les Smart Gr...

Archive ouverte: Thèse

Nassar, Jad | 2018-10-12

Smart Grids aim to transform the current electric grid into a "smarter" network where energy production is decentralized and automated, which facilitates the integration of renewable energy resources. This evolution is made possib...

A Smart Grid WSN Research Testbed | Khalek, Farah,

A Smart Grid WSN Research Testbed

Archive ouverte: Communication dans un congrès

Khalek, Farah, | 2020-10-12

International audience. The increasing integration of renewable energy resources (e.g., photo-voltaic cells, wind farms) has turned traditional electric grids into smart ones. This evolution takes an active role in ...

QoS-compliant Data Aggregation for Smart Grids | Nassar, Jad

QoS-compliant Data Aggregation for Smart Grids

Archive ouverte: Communication dans un congrès

Nassar, Jad | 2018-05-20

International audience. The Smart Grid (SG) aims to transform the current electric grid into a "smarter" network where the integration of renewable energy resources, energy efficiency and fault tolerance are the mai...

Chargement des enrichissements...