A study on the minimum duration of training data to provide a high accuracy forecast for PV generation between two different climatic zones

Archive ouverte : Article de revue

Soubdhan, Ted | Do, Minh-Thang | Robyns, Benoît

Edité par HAL CCSD ; Elsevier

International audience. This study focus on the minimum duration of training data required for PV generation forecast. In order to investigate this issue, the study is implemented on 2 PV installations: the first one in Guadeloupe represented for tropical climate, the second in Lille represented for temperate climate; using 3 different forecast models: the Scaled Persistence Model, the Artificial Neural Network and the Multivariate Polynomial Model. The usual statistical forecasting error indicators: NMBE, NMAE and NRMSE are computed in order to compare the accuracy of forecasts. The results show that with the temperate climate such as Lille, a longer training duration is needed. However, once the model is trained, the performance is better.

Consulter en ligne

Suggestions

Du même auteur

Predictive spatio-temporal model for spatially sparse global solar radiation data | André, Maïna

Predictive spatio-temporal model for spatially sparse global solar radiatio...

Archive ouverte: Article de revue

André, Maïna | 2016-09

International audience. This paper introduces a new approach for the forecasting of solar radiation series at a located station for very short time scale. We built a multivariate model in using few stations (3 stati...

Production d'énergie électrique à partir des sources renouvelables / Benoît Robyns, Arnaud Davigny, Bruno François [et al.] | Robyns, Benoît (1963-....). Auteur

Production d'énergie électrique à partir des sources renouvelables / Benoît...

Livre | Robyns, Benoît (1963-....). Auteur | 2012

"Les questions de développement durable et de projection des besoins futurs favorisent l'apparition de nouvelles technologies de production d'énergie et entraînent un changement de comportement des usagers .Ce livre contribue à un...

Gestion et valorisation du stockage de l'énergie dans les réseaux électriques / Benoît Robyns, Bruno François, Gauthier Delille,... [et al.] | Robyns, Benoît (1963-....). Auteur

Gestion et valorisation du stockage de l'énergie dans les réseaux électriqu...

Livre | Robyns, Benoît (1963-....). Auteur | 2015

L'essor des énergies renouvelables et le besoin de moyens de transport décarbonnés donnent un nouvel intérêt pour le stockage de l'énergie devenu désormais un élément clé du développement durable. Gestion et valorisation du stocka...

Du même sujet

Artificial intelligence for business : what you need to know about machine learning and neural networks / Doug Rose | Rose, Doug. Auteur

Artificial intelligence for business : what you need to know about machine ...

Livre | Rose, Doug. Auteur | 2021 - Second edition

EME-Net: A U-net-based Indoor EMF Exposure Map Reconstruction Method | Mallik, Mohammed

EME-Net: A U-net-based Indoor EMF Exposure Map Reconstruction Method

Archive ouverte: Communication dans un congrès

Mallik, Mohammed | 2022-03-27

International audience. In wireless communication systems, in order to respond to the perception of risks related to electromagnetic field exposure and allocate radio resources, the estimation of the received power ...

10. Incremental learning of convolutional neural networks in bioinformatics | Mousser, Wafa

10. Incremental learning of convolutional neural networks in bioinformatics

Archive ouverte: Type de document indéfini

Mousser, Wafa | 2022

International audience. In recent years, convolutional neural networks (CNNs) have been widely used in various computer visual recognition tasks and then extensively applied for medical images, particularly for comp...

Signal Denoising and Detection for Uplink in LoRa Networks based on Bayesian-optimized Deep Neural Networks | Tesfay, Angesom Ataklity

Signal Denoising and Detection for Uplink in LoRa Networks based on Bayesia...

Archive ouverte: Article de revue

Tesfay, Angesom Ataklity | 2023-01

International audience. Long-range and low-power communications are suitable technologies for the Internet of things networks. The long-range implies a very low signal-to-noise ratio at the receiver. In addition, lo...

9. Incremental deep learning model for plant leaf diseases detection | Ouadfel, Salima

9. Incremental deep learning model for plant leaf diseases detection

Archive ouverte: Type de document indéfini

Ouadfel, Salima | 2022-09-30

International audience. In recent years, deep learning has revolutionized machine learning and has been used with great success in various engineering fields, such as transportation, agriculture, finance, and market...

Neural networks for optimization and signal processing / Andrzej Cichocki, Rolf Unbehauen | Cichocki, Andrzej (19..-....). Auteur

Neural networks for optimization and signal processing / Andrzej Cichocki, ...

Livre | Cichocki, Andrzej (19..-....). Auteur | 1993

Chargement des enrichissements...