CNR-IEMN: a deep learning based approach to recognise covid-19 from CT-scan

Archive ouverte : Communication dans un congrès

Bougourzi, Fares | Contino, Riccardo | Distante, Cosimo | Taleb-Ahmed, Abdelmalik

Edité par HAL CCSD ; IEEE

ISBN 978-1-7281-7606-2 ; e-ISBN 978-1-7281-7605-5. International audience. The recognition of Covid-19 infection and distinguishing it from other Lung diseases from CT-scan is an emerging field in machine learning and computer vision community. In this paper, we proposed deep learning based approach to recognize the Covid-19 infection from the CT-scans. Our approach consists of two main stages. In the first stage, we trained deep learning architectures with Multi-task strategy for Slice-Level classification. In the second stage, we used the previous trained models with XG-boost classifier to classify the whole CT-scan into Normal, Covid-19 or Cap class. The evaluation of our approach achieved promising results on the validation data of SPGC-COVID dataset. In more details, our approach achieved 87.75% as overall accuracy and 96.36%, 52.63% and 95.83% sensitivities for Covid-19, Cap and Normal, respectively. From other hand, our approach achieved the fifth place on the three test datasets of SPGC on COVID-19 challenge where our approach achieved the best result for Covid-19 sensitivity.

Consulter en ligne

Suggestions

Du même auteur

Recognition of COVID-19 from CT Scans Using Two-Stage Deep-Learning-Based A...

Archive ouverte: Article de revue

Bougourzi, Fares | 2021

International audience. Since the appearance of the COVID-19 pandemic (at the end of 2019, Wuhan, China), the recognition of COVID-19 with medical imaging has become an active research topic for the machine learning...

Facial Beauty Prediction Using Hybrid CNN Architectures and Dynamic Robust ...

Archive ouverte: Communication dans un congrès

Dornaika, Fadi | 2022-08-21

oral. International audience

Covid-19 recognition using ensemble-cnns in two new chest x-ray databases

Archive ouverte: Article de revue

Vantaggiato, Edoardo | 2021-03-03

The used datasets were obtained from publically open source datastes from: 1 ieee8023/covid-chestxray-dataset https://github.com/ieee8023/covid-chestxray-dataset (accessed on 2 March 2021); 2 Chest X-Ray Images (Pneumonia) from Ka...

Du même sujet

Recognition of COVID-19 from CT Scans Using Two-Stage Deep-Learning-Based A...

Archive ouverte: Article de revue

Bougourzi, Fares | 2021

International audience. Since the appearance of the COVID-19 pandemic (at the end of 2019, Wuhan, China), the recognition of COVID-19 with medical imaging has become an active research topic for the machine learning...

L' état de droit et la crise sanitaire : actes de la conférence du 17 juin ...

Livre | Le Prado, Didier (19..-....). Directeur de publication | 2022

De nombreux pays, dont la France, ont traversé une crise sanitaire majeure. Des voix se sont élevées pour dénoncer le fait que les principes fondamentaux d'un Etat de droit auraient été bafoués. La section Droit de l'action publiq...

La COVID-19 et l'état d'urgence sanitaire (mars 2020-juillet 2022) : quels ...

Livre | Cherubini, Bernard (19..-....) - ethnologue. Directeur de publication | 2023

ILC-Unet++ for Covid-19 Infection Segmentation

Archive ouverte: Communication dans un congrès

Bougourzi, Fares | 2022-05-23

International audience. Since the appearance of Covid-19 pandemic, in the end of 2019, Medical Imaging has been widely used to analysis this disease. In fact, CT-scans of the Lung can help to diagnosis, detect and q...

Au cœur de la vague : reportage dessiné / Chappatte

Livre | Chappatte, Patrick. Auteur. Illustrateur | 2020

La crise sanitaire de la Covid-19 au prisme de l'interdisciplinarité juridi...

Livre | Padilla, Marie. Directeur de publication | 2022

Cet ouvrage est le fruit d’une réflexion commune entamée dès le mois de mars 2020 autour de la crise sanitaire de la Covid-19 prise comme objet juridique susceptible d’affecter l’ensemble des branches du droit. Porté par un collec...

Chargement des enrichissements...