Probabilistic machine learning : an introduction / Kevin P. Murphy

Livre

Murphy, Kevin P. (1970-....). Auteur

Edited by The MIT Press - 2022

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory.This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation.Probabilistic Machine Learning grew out of the author's 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Autres documents dans la collection «Adaptative computation and machine learning series»

Vérification des exemplaires disponibles ...

Se procurer le document

Vérification des exemplaires disponibles ...

Suggestions

Du même sujet

Introduction au Machine Learning / Chloé-Agathe Azencott,...

Livre | Azencott, Chloé-Agathe (19..-....). Auteur | 2019 - [Nouvelle présentation avec corrections]

La 4e de couverture indique : "Le Machine Learning est une discipline dont les outils puissants permettent aujourd'hui à de nombreux secteurs d'activité de réaliser des progrès spectaculaires grâce à l'exploitation de grands volum...

Machine learning : les fondamentaux / Matt Harrison

Livre | Harrison, Matt (1975-....). Auteur | 2020

"Avec plus de 200 extraits de code et de dizaines de notes techniques, ce guide de référence pratique se propose de vous aider à tracer votre route dans le domaine de l'apprentissage machine avec des données structurées. Son auteu...

The deep learning revolution / Terrence J. Sejnowski

Livre | Sejnowski, Terrence Joseph (19..-....). Auteur | 2018

The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learnin...

Le machine learning avec Python : la bible des data scientists / Andreas C....

Livre | Müller, Andreas C.. Auteur | 2018

La 4e de couv. indique : "Le machine learning (ou apprentissage automatique) est désormais partie intégrante de nombreuses applications commerciales et projets de recherche. Mais ce domaine ne reste pas l'apanage des grandes entre...

Développer des applications machine learning / Emmanuel Ameisen

Livre | Ameisen, Emmanuel. Auteur | 2020

"Acquérez les compétences nécessaires pour concevoir, construire et déployer des applications fondées sur l'apprentissage automatique (ou ML, pour machine learning). Au cours de ce livre pratique, vous construirez un exemple d'app...

Data science / John D. Kelleher and Brendan Tierney

Livre | Kelleher, John D. (1974-....). Auteur | 2018

Chargement des enrichissements...