An introduction to statistical learning : with applications in R / Gareth James, Daniela Witten, Trevor Hastie... [et al.]

Livre

James, Gareth (19..-....). Auteur | Witten, Daniela (19..-....). Auteur | Hastie, Trevor J. (1953-....). Auteur | Tibshirani, Robert John (1956-....). Auteur

Edited by Springer ; Springer Science+Business Media - 2021

"An Introduction to Statistical Learning" provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote "The Elements of Statistical Learning" (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. "An Introduction to Statistical Learning" covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Autres documents dans la collection «Springer texts in statistics»

Vérification des exemplaires disponibles ...

Se procurer le document

Vérification des exemplaires disponibles ...

Suggestions

Du même auteur

An introduction to statistical learning : with applications in R / Gareth J...

Livre | James, Gareth (19..-....). Auteur | 2013

An introduction to the bootstrap / Bradley Efron,... and Robert J. Tibshira...

Livre | Efron, Bradley (1938-....). Auteur | 1994

En annexe, "software for bootstrap computations".

Du même sujet

Manuel de statistiques / Gérard Forzy,...

Livre | Forzy, Gérard (1954-....). Auteur | 2014 - 3e édition

An introduction to statistical learning : with applications in R / Gareth J...

Livre | James, Gareth (19..-....). Auteur | 2013

Introductory statistics / Thomas H. Wonnacott,... Ronald J. Wonnacott,...

Livre | Wonnacott, Thomas H. (1935-....). Auteur | 1990 - 5th edition

R pour la statistique et la science des données / sous la direction de Fran...

Livre | Husson, François (1970-....) - mathématicien. Directeur de publication | 2018

Le logiciel R est un outil incontournable de statistique, de visualisation de données et de science des données tant dans le monde universitaire que dans celui de l'entreprise. Ceci s'explique par ses trois principales qualités : ...

Méthodes statistiques : médecine-biologie / Jean Bouyer

Livre | Bouyer, Jean (1955-....) - enseignant et chercheur en épidémiologie. Auteur | 2017 - [2e édition]

Practical statistics for data scientists : 50+ essential concepts using R a...

Livre | Bruce, Peter C. (19..-....). Auteur | 2020 - 2nd edition

"Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of thi...

Chargement des enrichissements...