An introduction to statistical learning : with applications in R / Gareth James, Daniela Witten, Trevor Hastie... [et al.]

Livre

James, Gareth (19..-....). Auteur | Witten, Daniela (19..-....). Auteur | Hastie, Trevor J. (1953-....). Auteur | Tibshirani, Robert John (1956-....). Auteur

Edited by Springer ; Springer Science+Business Media - 2021

"An Introduction to Statistical Learning" provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote "The Elements of Statistical Learning" (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. "An Introduction to Statistical Learning" covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Autres documents dans la collection «Springer texts in statistics»

Vérification des exemplaires disponibles ...

Se procurer le document

Vérification des exemplaires disponibles ...

Suggestions

Du même auteur

An introduction to statistical learning : with applications in R / Gareth J...

Livre | James, Gareth (19..-....). Auteur | 2013

An introduction to the bootstrap / Bradley Efron,... and Robert J. Tibshira...

Livre | Efron, Bradley (1938-....). Auteur | 1994

En annexe, "software for bootstrap computations".

Du même sujet

An introduction to statistical learning : with applications in R / Gareth J...

Livre | James, Gareth (19..-....). Auteur | 2013

Introductory statistics / Thomas H. Wonnacott,... Ronald J. Wonnacott,...

Livre | Wonnacott, Thomas H. (1935-....). Auteur | 1990 - 5th edition

La théorie des jeux / Gaël Giraud

Livre | Giraud, Gaël (1970-....) - économiste. Auteur | 2009 - 3e édition revue et augmentée

La 4ème de couv. indique : "Autant prévenir le lecteur tout de suite : ce livre n'est ni un cours de mathématiques, ni un manuel pour faire fortune dans les casinos de la côte ouest. Il s'agit d'une introduction générale à ce qu'i...

LCA en anglais : réussir la nouvelle épreuve de l'iECN : iECN 2017-2018-201...

Livre | Faure, Pascaline (1967-....) - maître de conférences. Auteur | 2016

L'épreuve de Lecture Critique d'Article porte désormais sur au moins un article en anglais. Comment préparer cette nouvelle épreuve ? Cet ouvrage validé par le Collège National des Enseignants de Thérapeutique (APNET) vous donne l...

Statistical computing with R / Maria L. Rizzo,...

Livre | Rizzo, Maria L. (19..-....). Auteur | 2008

The black swan : the impact of the highly improbable / Nassim Nicholas Tale...

Livre | Taleb, Nassim Nicholas (1960-....) - Revised edition.

'The Black Swan' is a concept that will change the way you look at the world. Black Swans underlie almost everything, from the rise of religions, to events in our own personal lives. Nassim Taleb explains everything we know about ...

Chargement des enrichissements...