Data-driven predictive control method for building heating systems: experimental validation

Archive ouverte : Communication dans un congrès

Abdellatif, Makram | Chamoin, Julien | Defer, Didier

Edité par HAL CCSD ; IEEE

International audience. As the most energy-intensive economic sector, the building industry offers a significant potential of energy savings. Heating systems are responsible for the most important part of the energy consumed in buildings. The principal function of heating in buildings is to compensate heat losses through ventilation, building’s envelope, and user's activity more widely. Generally, heating systems in buildings are regulated according to schedules with one or more temperature set points defined according to the occupancy of the building. One of the problems of the efficiency of heating systems lies in their control mode which often does not allow to anticipate the possible disturbing events. The conventional control method, which is the most widely used, regulates the heating by studying the response time of the building. However, it is not able to anticipate other phenomena such as meteorological variations (e.g., variation of the outside temperature) and to use the thermal inertia of the building to avoid overconsumption or uncomfortable situations. This paper proposes a data-driven predictive control method for building heating systems in order to improve thermal comfort and energy efficiency. Thereafter, to validate this method, the heating of an experimental building was controlled over a period of 21 days.

Consulter en ligne

Suggestions

Du même auteur

Prédiction par régression linéaire multiple : application au comportement t...

Archive ouverte: Communication dans un congrès

Abdellatif, Makram | 2021-05

International audience. Il existe différentes façons de prédire le comportement des bâtiments : la simulation thermique dynamique, les méthodes statistiques et les algorithmes d’apprentissage, et les approches hybri...

Data-driven predictive control method for building heating systems: experim...

Archive ouverte: Communication dans un congrès

Abdellatif, Makram | 2022-09-05

International audience

A thermal control methodology based on a predictive model for indoor heatin...

Archive ouverte: Communication dans un congrès

Abdellatif, Makram | 2019

International audience

Du même sujet

Python for Data Science / by A. Lakshmi Muddana

Livre | Muddana, A. Lakshmi. Auteur | 2024

The book is designed to serve as a textbook for courses offered to undergraduate and graduate students enrolled in data science. This book aims to help the readers understand the basic and advanced concepts for developing simple p...

Intelligence artificielle : enquête sur ces technologies qui changent nos v...

Livre | Bilal, Enki (1951-....). Auteur | 2018

Téléphones à tout faire, maisons intelligentes, voitures autonomes, «big data» omniprésent… Pas besoin de chercher bien loin : les machines qui pensent sont déjà parmi nous. Au point de faire peur parfois : comme la créature de Fr...

The artifice of intelligence : divine and human relationship in a robotic a...

Livre | Herzfeld, Noreen L. (1956-....). Auteur | 2023

AI is becoming ubiquitous. Whatever its arrival portends for our future, whether riches or ruin, it cannot be avoided. The Artifice of Intelligence explores two questions at the heart of a theological response to AI. Is it possibl...

A thermal control methodology based on a machine learning forecasting model...

Archive ouverte: Article de revue

Abdellatif, Makram | 2022

International audience. To take advantage of the data generated in buildings, this document proposes a methodology based on a machine learning model to improve thermal comfort and energy efficiency. This methodology...

The political philosophy of AI : an introduction / Mark Coeckelbergh

Livre | Coeckelbergh, Mark (19..-....). Auteur | 2022

Artificial justice / Tatiana Dancy

Livre | Dancy, Tatiana. Auteur | 2023

Chargement des enrichissements...